Stochastic Modeling of The Decay Dynamics of Online Social Networks

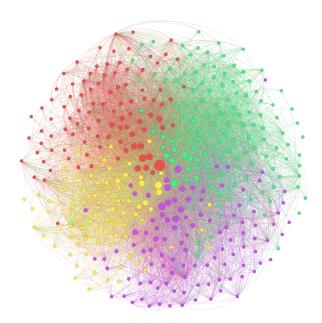
Mohammed Abufouda and Katharina Anna Zweig, Computer Science Department, University of Kaiserslautern, Germany

Complenet 2017, Dubrovnic, Croatia

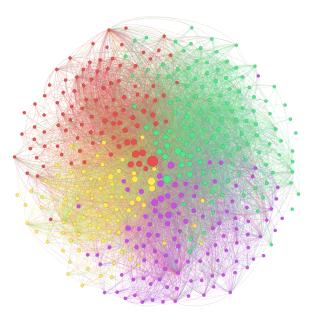
• Growth dynamics

- Growth dynamics
- Decay dynamics

- Growth dynamics
- Decay dynamics

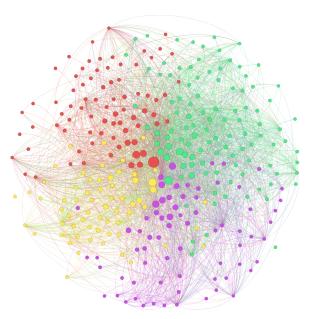


- Growth dynamics
- Decay dynamics



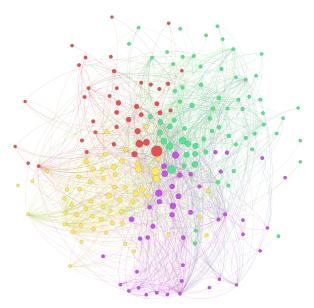
The decay of Startup Business website Oct-2009 to Nov-2011

- Growth dynamics
- Decay dynamics



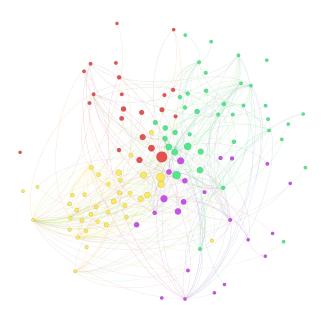
The decay of Startup Business website Oct-2009 to Nov-2011

- Growth dynamics
- Decay dynamics



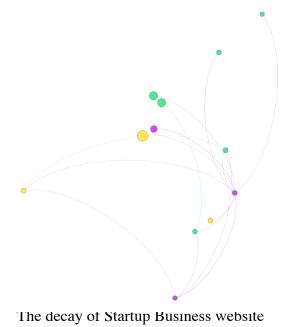
The decay of Startup Business website Oct-2009 to Nov-2011

- Growth dynamics
- Decay dynamics

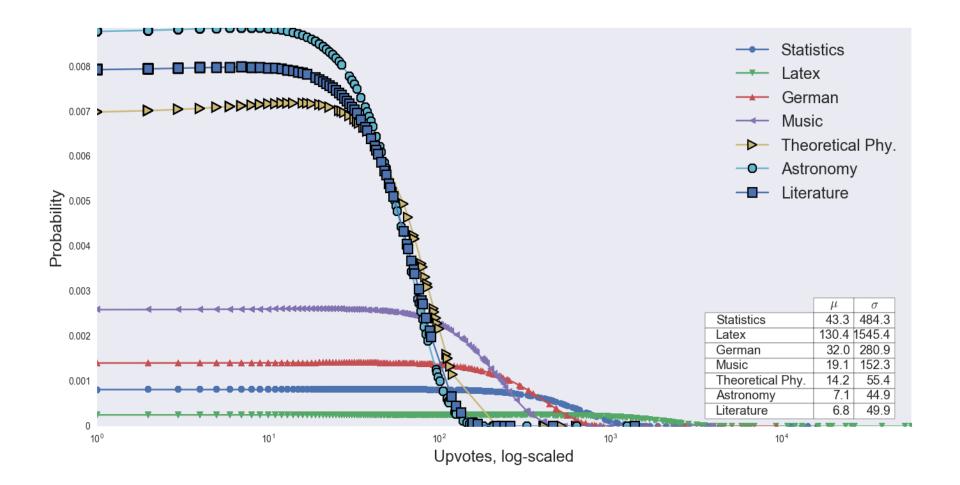


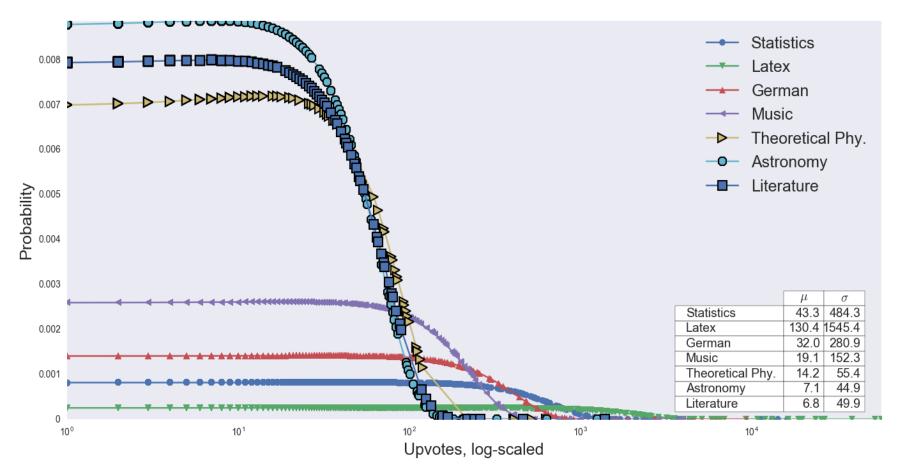
The decay of Startup Business website Oct-2009 to Nov-2011

- Growth dynamics
- Decay dynamics



Oct-2009 to Nov-2011

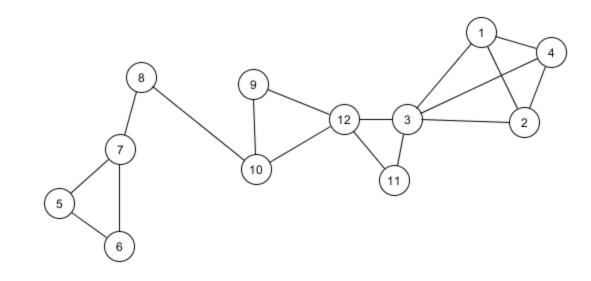




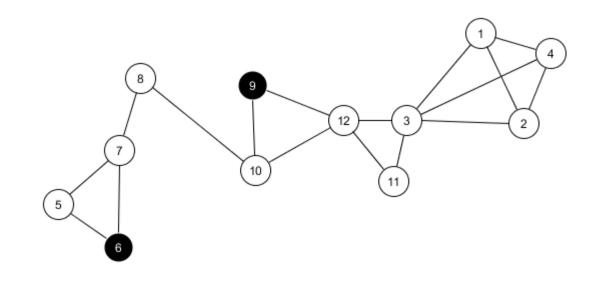
We found the same difference for many types of interactions like comments, reputation...etc.

- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time

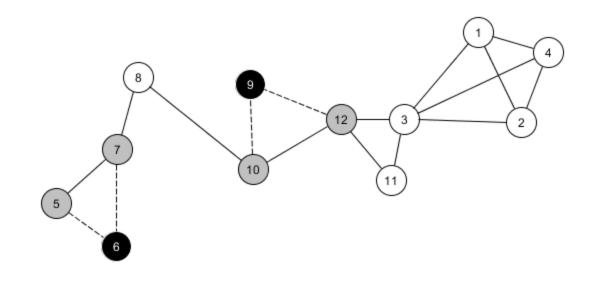
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



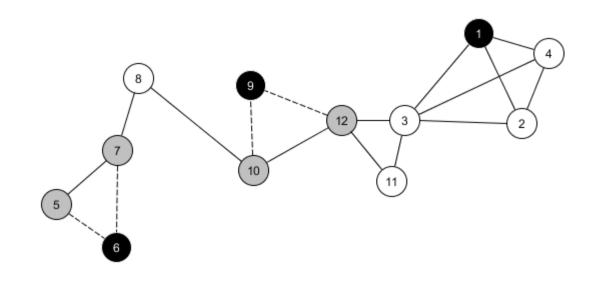
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



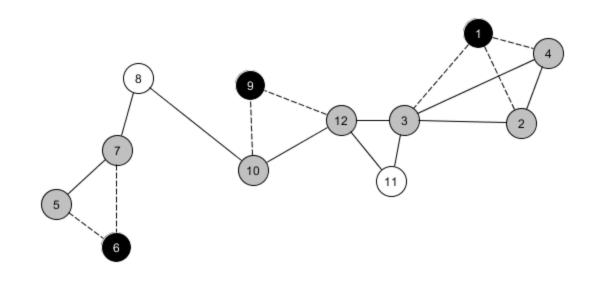
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



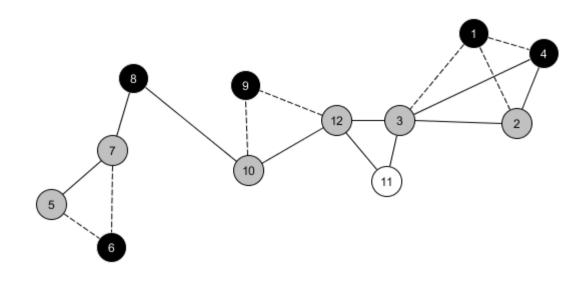
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



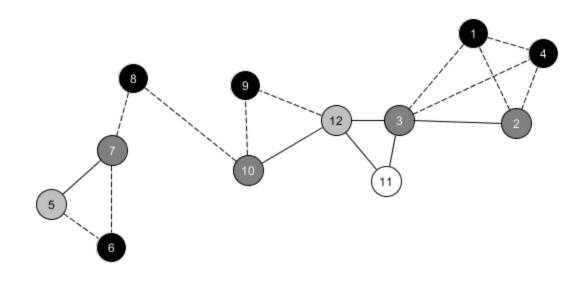
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



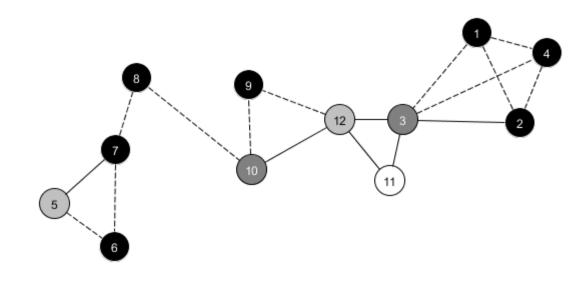
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



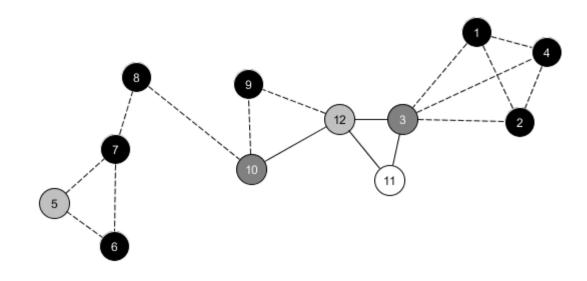
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



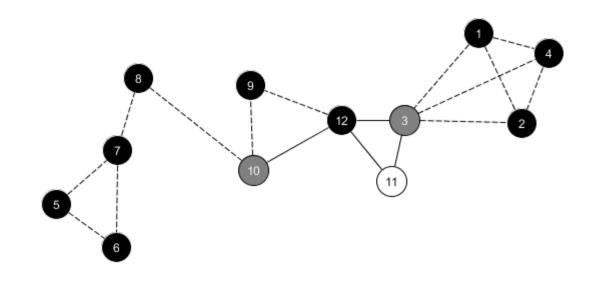
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



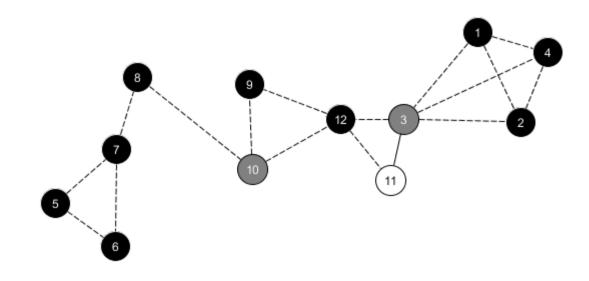
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time



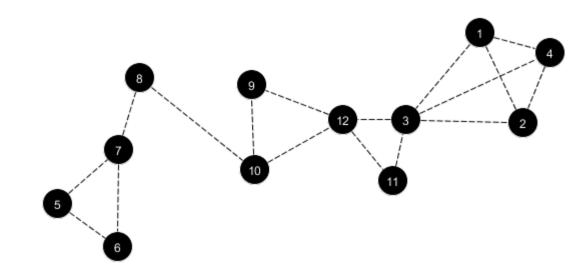
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time

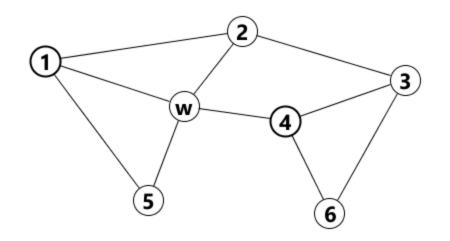


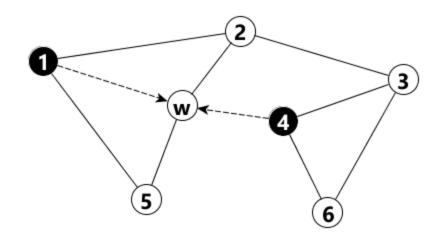
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time

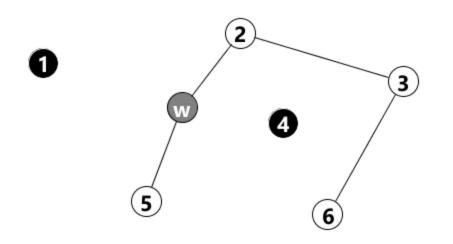


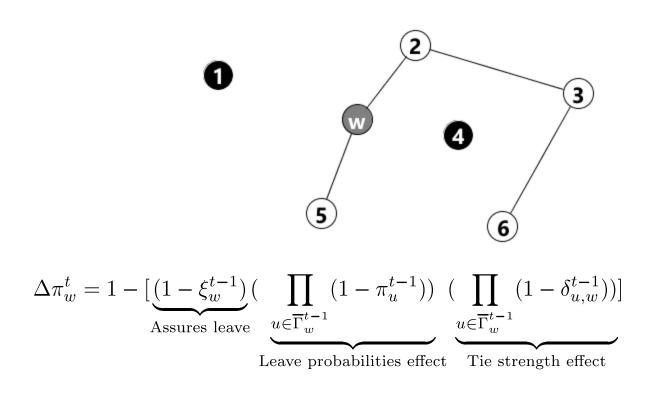
- Each node has an initial leave probability $\pi_v^{t=0}$
- The leave probability increases over time





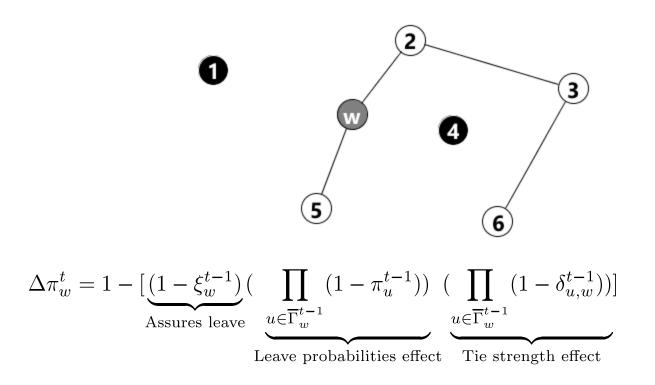






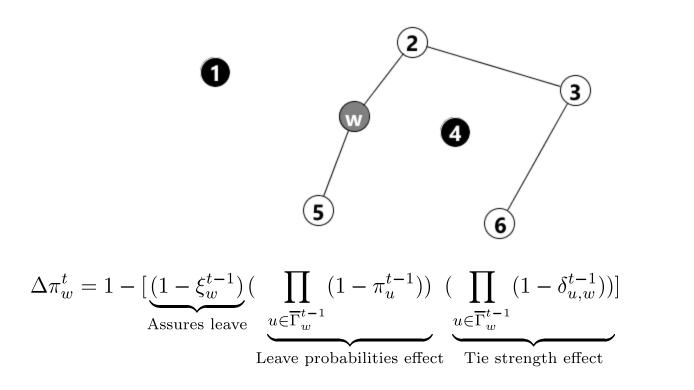
1. Neighbours Leave

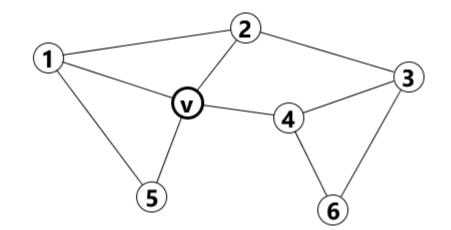
2. Node Leave



1. Neighbours Leave

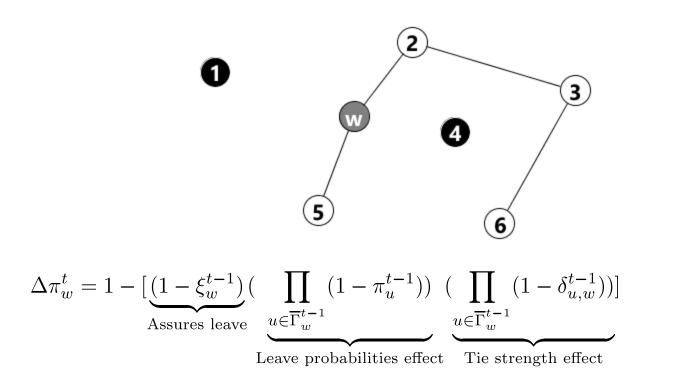
2. Node Leave

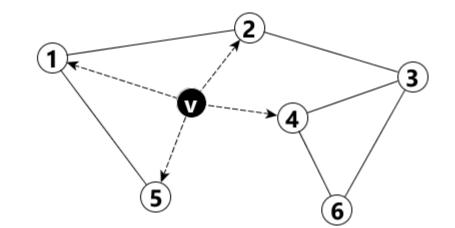




1. Neighbours Leave

2. Node Leave

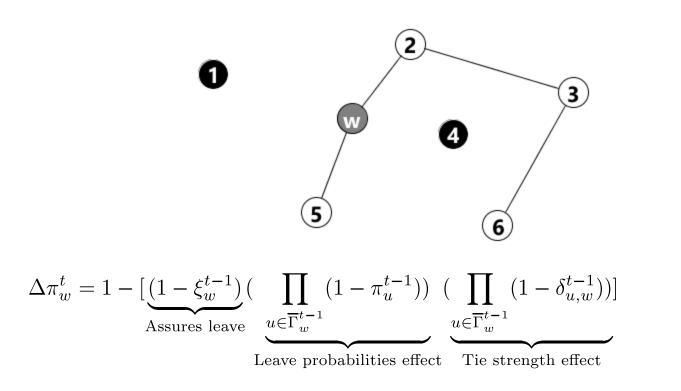


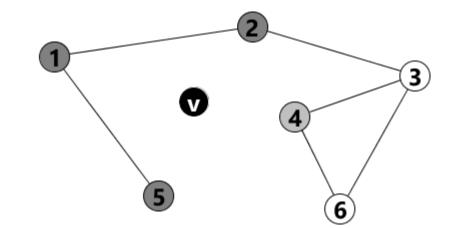


How the model sees decay

1. Neighbours Leave

2. Node Leave





How the model sees decay

1. Neighbours Leave

2. Node Leave



Theoretical results

- Theorem 1: The node leave equation is *submodular*
- Theorem 2: The neighbors leave equation is *submodular*

Theoretical results

- Theorem 1: The node leave equation is *submodular*
- Theorem 2: The neighbors leave equation is *submodular*

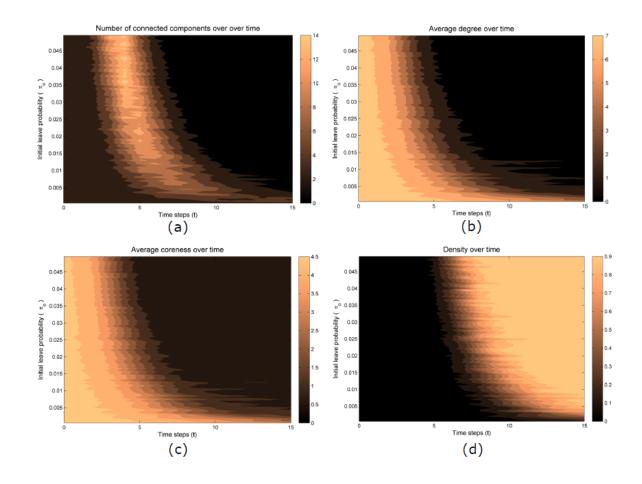
$$\begin{aligned} & Maximize \ \sum_{v \in V(G)_t} \Delta \pi^t(v) = \sum_{v \in V(G)_t} \sum_{w \in \Gamma_v^t} 1 - (1 - \pi_v^{t-1})(1 - \delta_{v,w}^{t-1}) \\ & Subject \ to \ |\mathcal{A}| \le k, \mathcal{A} \subseteq V(G^t) \end{aligned}$$

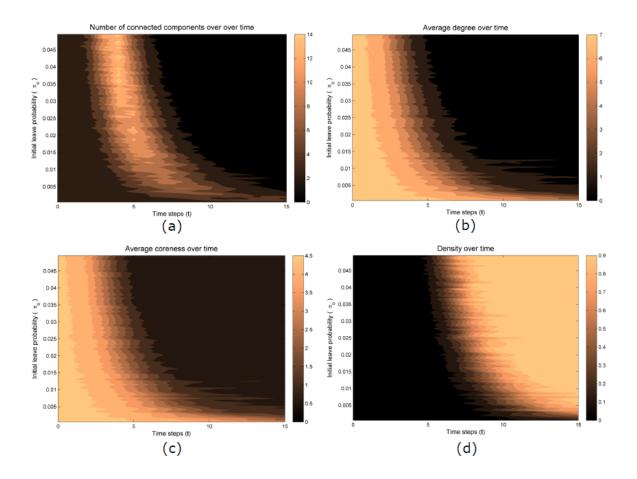
Theoretical results

- Theorem 1: The node leave equation is *submodular*
- Theorem 2: The neighbors leave equation is *submodular*

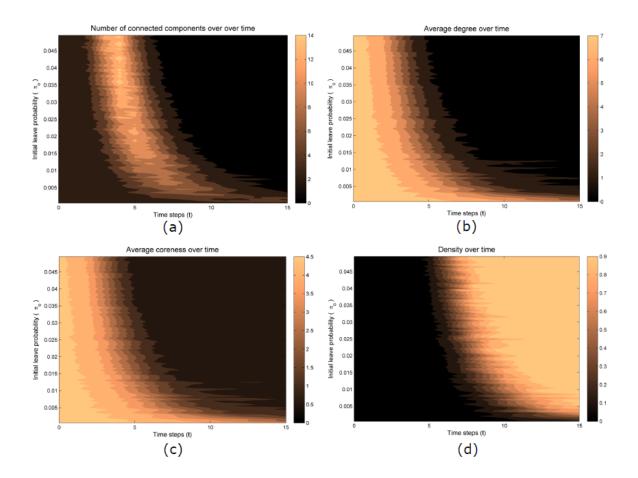
$$\begin{aligned} & Maximize \ \sum_{v \in V(G)_t} \Delta \pi^t(v) = \sum_{v \in V(G)_t} \sum_{w \in \Gamma_v^t} 1 - (1 - \pi_v^{t-1})(1 - \delta_{v,w}^{t-1}) \\ & Subject \ to \ |\mathcal{A}| \le k, \mathcal{A} \subseteq V(G^t) \end{aligned}$$

 $\begin{aligned} \text{Minimize} \quad \sum_{v \in V(G)_t} \sum_{w \in \Gamma_v^t} 1 - (1 - \pi_v^{t-1})(1 - \delta_{v,w}^{t-1}) \\ \text{Subject to} |\mathcal{A}| \leq k, \mathcal{A} \subseteq V(G) \end{aligned}$

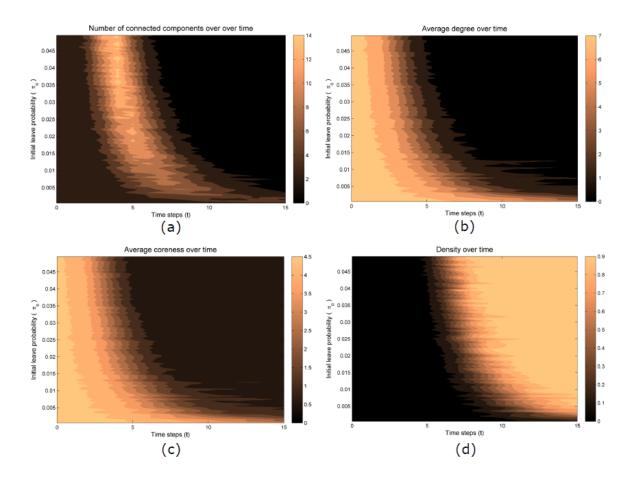




Applications

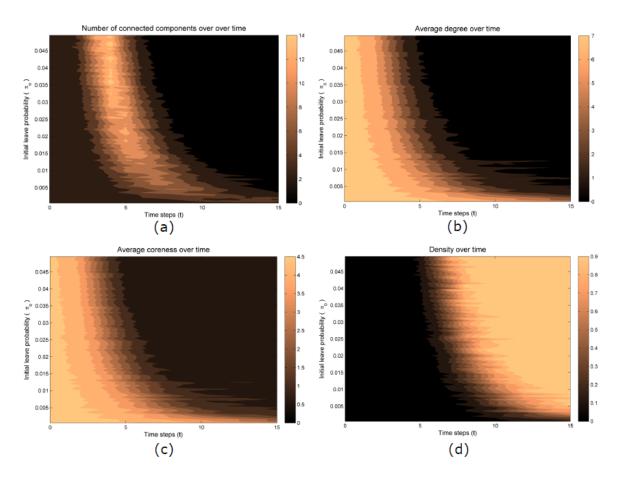


• Detecting leave cascade



Applications

- Detecting leave cascade
- Maximizing the leave effect



Applications

- Detecting leave cascade
- Maximizing the leave effect
- Engineering resilient networks